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Abstract

We present a new parameterisation for shear-driven, stratified, turbulent mixing which is per-

tinent to climate models, in particular the shear-driven mixing in overflows and the Equatorial

Undercurrent. Critically for climate applications this parameterisation is simple enough to be im-

plemented implicitly, which allows the parameterisation to be used with timesteps that are long

compared to both the time scale on which the turbulence evolves and the time scale with which

it alters the large-scale ocean state.

We express the mixing in terms of a turbulent diffusivity that is dependent on the shear forc-

ing and a length scale that is the minimum of the width of the low Richardson number region

(Ri = N2/|uz|2, where N is the buoyancy frequency and |uz| is the vertical shear) and the buoy-

ancy length scale over which the turbulence decays (Lb = Q1/2/N where Q is the turbulent kinetic

energy). This also allows a decay of turbulence vertically away from the low Richardson number

region over the buoyancy scale: a process which our results show is important for mixing across

a jet. The diffusivity is determined by solving a vertically nonlocal steady-state TKE equation and

a vertically elliptic equilibrium equation for the diffusivity itself.

We conduct high-resolution non-hydrostatic simulations of shear-driven stratified mixing in both a

shear layer and a jet. The results of these simulations support our theory and are used, together

with discussions of various limits and reviews of previous work, to constrain parameters.
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1. Introduction

Although shear-driven turbulence in the ocean occurs over small scales, there are regions where

the influence of this mixing can have a large-scale impact. In particular, both the shear-driven

mixing in the Equatorial undercurrent (EUC) and that in overflows are climatically significant. In

the former case it is clear that mixing in the EUC affects the sea surface properties and hence

has a direct influence on the climate. Mixing in overflows, despite the fact that it occurs well

below the ocean surface, can still significantly impact the climate. The overflows in the North At-

lantic, the Denmark Straits overflow and the Faroe Bank Channel overflow, together supply most

of the North Atlantic Deep Water, which forms the dominant water mass of the deep branch of

the thermohaline circulation. Similarly the overflows from the Antarctic shelf are the source of

Antarctic Bottom Water. Mixing between the dense overflow water and the overlying water re-

duces the density and increases the volume of the deep water. To understand and predict how

the Atlantic’s overturning circulation may evolve in alternative climate regimes, and how this in

turn may provide feedbacks on the climate, requires the ability to predict how much mixing oc-

curs in these overflows and where it is located. Although the overflow mixing is localized, it can

have a profound influence on the large-scale circulation, by modifying properties and transports

of deep water masses, which in turn can influence overlying currents. For example, in an isopy-

cnal model (in which there is minimal numerical diapycnal mixing), when parameterized mixing

is removed from the Nordic overflows, sea surface temperature differences of a few degrees are

produced in the North Atlantic on a time-scale of only a few years. (Legg et al, 2007).

Although the circumstances leading to mixing in overflows and the Equatorial Undercurrent

(EUC) are very different, the main mixing process in both cases is due to shear-driven strati-

fied turbulence. In an overflow the gravitational acceleration of dense fluid flowing down topo-

graphical slopes creates a velocity shear at the interface between the dense fluid and overlying
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ambient water and, provided the gradient Richardson number is sufficiently small, this shear

generates instabilities and turbulence. Fig 1. shows a schematic of vertical profiles in the Red

Sea outflow based on data from Peters and Johns (2005). At the top of the gravity current there

are regions with large shear and low Ri that exhibit overturns due to turbulent mixing as seen in

the vertical turbulent displacement. This suggests that a shear-driven mixing parameterisation

would be appropriate at the top of the plume. There is also a region at the base of the plume with

low Ri due to large shear caused by frictional drag on the ocean floor, however it is the shear

at the top of the plume which is driving the entrainment into the plume. This bottom boundary

layer process has been credibly parameterised in Legg et al (2006) by assuming that 20% of the

energy removed by bottom drag is used to homogenise a turbulent bottom boundary layer.

In the EUC the flow is driven by a horizontal pressure gradient generated by equatorial trade

winds. The structure of the current creates velocity shears at the top and bottom of the jet, driv-

ing turbulent mixing where the Richardson number is low. If the mixing in overflows and the EUC

are both simply due to shear-driven turbulence, then we would expect a parameterisation of this

process to capture the mixing in both scenarios. Chang et al (2005) compared the entrainment

predicted by the interior part of KPP (parameterising the shear-driven mixing in the Pacific EUC)

to Large Eddy Simulations (LES) of gravity currents and found that the magnitude of the mixing

had to be increased by a factor of 50 to fit the data. Since this parameterisation involves dimen-

sional constants that have been calibrated for the Pacific EUC, it is not surprising that it does

not work in a different regime where the length scales and velocity shears driving the turbulence

are different. It has also been shown in global ocean simulations with the Hallberg Isopycnal

model (HIM) that neither the interior part of KPP nor the Hallberg (2000) parameterisation can

be tuned to give reasonable mixing for both the EUC and overflows: either the EUC is much too

diffuse or the Mediterranean overflow (for example) is much too deep. This highlights the need
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for an improved parameterisation, however any such parameterisation must be relatively simple

to be useful for a climate model. Since a climate model typically requires time steps that are long

compared to the time scales of the turbulence, the mixing must be treated implicitly, and hence

the parameterisation should be sufficiently simple to be implemented in this way.

Perhaps the most difficult issue in constructing a parameterisation that is simple enough to be

used for climate models is how to represent the turbulent length scales. The interior part of KPP

and similar parameterisations simply use a prescribed dimensional length, whereas the Hallberg

(2000) parameterisation uses the vertical extent of the low Richardson number region. All these

parameterisatons assume that turbulent mixing stops once the Richardson number reaches a

critical value, however we will demonstrate that the turbulence can penetrate vertically away

from the low Richardson number region. Hence we base our parameterisation on two vertical

length scales: the vertical extent of the low Richardson number region, and the buoyancy length

scale (the length scale over which the turbulent velocity fluctuations are affected by stratification).

In order to assess the importance of this vertical propogation we investigate the mixing in a jet,

where the Richardson number becomes large in the core, as well as in a shear layer.

In the following sections we discuss current parameterisations in geopotential and isopycnal

models, how these are linked and what the implications are for general parameterisations.

We then proceed to outline our new parameterisation and discuss how it compares to well-

understood limits. Sets of parameters are found by studying previous research and comparing

our parameterisation to high-resolution non-hydrostatic simulations of shear-driven stratified tur-

bulent mixing in shear and jet flow. Our parameterisation reproduces the salient features of these

simulations and performs well compared with other parameterisations. We then discuss how this

parameterisation is implemented in ocean climate models.
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2. Existing parameterisations

There are several parameterisations currently used for predicting shear driven mixing. In geopo-

tential models this turbulent mixing is generally expressed as a diffusion of density due to an

eddy diffusivity κ such that
Dρ

Dt
=

∂

∂z

(
κ
∂ρ

∂z

)
. (1)

This diffusivity is often expressed in terms of a gradient Richardson number Ri = N2/S2 where

S is the vertical shear (S = ‖uz‖) and N is the buoyancy frequency (N2 = −gρz/ρo). One

commonly used parameterisation is the interior part of KPP (Large et al, 1994), where κ is given

by

κ = κo

(
1−min

(
1,

Ri

Ric

)2
)3

(2)

with κo = 5 × 10−3 m2s−1 and Ric = 0.7. Although this has been calibrated for the Pacific EUC,

the dimensional constant κo implies that this cannot be a universal parameterisation, since the

magnitude of the diffusion is not dependent on the length and time scales of the flow. There-

fore there is no reason to expect that this parameterisation would be appropriate for overflows.

Parameterisations such as this are local in the sense that the diffusivity is only dependent on

the local gradient Richardson number. Other similar local parameterisations include Pacanowski

and Philander (1981), and Yu and Schopf (1997) which are also subject to the same criticisms

as the interior part of KPP. There are also more complex models to predict the eddy diffusivity,

such as two equation turbulence models, which will be discussed in Section 5d.

Isopycnal coordinates are the natural coordinate system for simulating shear driven mixing of

density since the resolution naturally concentrates in regions of high stratification. There is also

no numerical mixing across density surfaces, so all diapycnal mixing is specified as a change of

4



layer thickness given by
∂

∂t

(
−∂z

∂ρ

)
+∇.

(
−∂z

∂ρ
u

)
=

∂w∗

∂ρ
, (3)

where w∗ is the cross diapycnal velocity (McDougall and Dewar, 1997). Hallberg (2000) param-

eterised the turbulent entrainment into gravity currents by expressing the right hand side of this

as
∂w∗

∂ρ
= 2

∣∣∣∣
∣∣∣∣
∂u

∂ρ

∣∣∣∣
∣∣∣∣ F (Ri). (4)

The function F (Ri) is a function of the Richardson number given by max
(
0.08

(
1−Ri/Ric

1+5Ri

)
, 0

)

with a critical Richardson number of Ric = 0.8. This parameterisation uses interior ’boundary

conditions’ that w∗ reverts to a background diffusive value w∗ = ∂
∂ρ

(
κo

∂ρ
∂z

)
with the background

diffusivity κo wherever Ri > Ric. This is generally referred to as the Turner parameterisation

(TP) since it is based on the laboratory studies of Ellison and Turner (1959) and Turner (1986).

In those studies the increase in thickness h of the entraining gravity current was found to de-

pend on the velocity difference ∆U between the gravity current and the ambient fluid, and the

bulk Richardson number Rib = g∆ρh
ρo∆U2 (where ∆ρ is the density difference between the dense

current and the ambient water). This is similar to the gradient Richardson number except it is

dependent on the bulk properties of the system rather than local gradients. Since the formulation

used in Hallberg (2000) is for the change in layer thickness due to the gradient Richardson num-

ber, rather than the bulk Richardson number, it is not clear that this parameterisation is directly

transferable. Papadakis et al (2002) examined the sensitivity of this parameterisation to the en-

trainment rate and the critical value of Ri below which mixing stops, and finds that the latter is

the most important in modifying water mass properties in the Mediterranean outflow. This is also

found in the modified parameterisation of Xu et al (2006) which uses a linear function of F (Ri)

to compare against nonhydrostatic LES of gravity currents. They find the best fit to their data is

with the form F (Ri) = max
(
0.2

(
1− Ri

0.25

)
, 0

)
although their solution is not very sensitive to the

entrainment rate. An interesting point to note is that the critical value in this case is 0.25 which is
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the critical value predicted by linear instability analysis for the growth of Kelvin-Helmholtz insta-

bilities in a shear layer (Miles, 1961).

Since there are parameterisations in both isopycnal and geopotential coordinate systems, it is

illuminating to consider how these are linked. We can compare parameterisations in both coor-

dinate systems by expressing the diapycnal velocity in (3) in terms of the Lagrangian change of

density w∗ = ∂z
∂ρ

Dρ
Dt

. Then using the diffusive closure of (1) we can calculate an equivalent eddy

diffusivity for the change of layer thickness in isopycnal coordinates giving

∂

∂t

(
−∂z

∂ρ

)
+∇.

(
−∂z

∂ρ
u

)
=

1

ρz

∂

∂z

(
1

ρz

∂

∂z
(κρz)

)
. (5)

Parameterising the right hand side of this as in Hallberg (2000) (see 4) implies an equivalent

eddy diffusivity for geopotential coordinates given by the solution of

∂

∂z

(
1

ρz

∂

∂z
(κρz)

)
= −2S F (Ri), (6)

where S is the vertical shear (S = ‖uz‖) and we have assumed stable stratification. The bound-

ary conditions are that (6) is valid for Ri ≤ Ric with κ = 0 for Ri > Ric. There are issues with

this parameterisation in that where the stratification is zero the eddy diffusivity is not well de-

fined. Although this is not a problem in isopycnal coordinates since there is always, in practice, a

non-zero stratification due to the definition of layers, it makes this parameterisation difficult to ap-

ply to geopotential coordinate models, particularly if the turbulent eddy diffusivity is used to mix

momentum or a tracer. The main issue with this parameterisation, however, is that it assumes

that a parameterisation for the bulk entrainment into a plume due to the bulk properties of the

plume, can be directly applied to the entrainment into an isopycnal layer due to the local vertical

gradients of velocity and density. This ignores any internal structure to the mixing.

The observations underpinning TP are applicable to the change in layer thickness integrated
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over the entire turbulent layer, rather than for individual layers. This would imply

∂h

∂t
+∇.U = −

(
∂κ

∂z
+ κ

ρzz

ρz

)∣∣∣∣
top of plume

(7)

where h =
∫ ρb

ρt
−zρdρ and U =

∫ ρb

ρt
−zρudρ, and ρb and ρt are the density at the top and bottom

of the plume respectively. Here we have taken the density at the top of the plume to be fixed by

definition, and defined the bottom of the plume (with ub = 0) by the topography. The entrainment

into the plume occurs at the top of the plume due to a mixing layer of width hi (see Fig. 1). If we

make the assumption that the stratification and shear over this mixing layer are constant, then

Ri is constant and (6) gives κ via
∂2κ

∂z2
= −2S F (Ri) (8)

over the mixing region where Ri < Ric, and κ = 0 outside it. κ is also symmetric about the

centre of the layer, so integrating across the layer gives ∂κ
∂z

∣∣
top of plume

= −∆UF (Ri). Note that

the factor of 2 appears in our parameterisation since there is entrainment at the top and bottom

of each layer, though with the assumptions here these are equal. Comparing with (7) we find the

increase in layer thickness is given by

∂h

∂t
+∇.U = ∆UF (Ri) (9)

since we have assumed κ = 0 at the top of the plume. This is similar to the relationship found in

the laboratory results of Turner (1986), in that the entrainment is related to the velocity difference

between the dense plume and overlying water and a non-dimensional factor which is dependent

on a Richardson number. Note however that Ri 6= Rib, in fact Ri = Ribhi/h < Rib, implying that

the function F (Ri) of the gradient Richardson number should not be the same function as that

found in TP for the bulk Richardson number: in particular the critical Richardson number (where

F (Ri) = 0) should be smaller than in TP.

Although this parameterisation compares well with these laboratory results it is still essentially
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a local parameterisation due to the interior ’boundary conditions’. There is mixing in the low

Richardson number region, but this can never spread outside the region, and there can never be

mixing in regions of zero shear. We will demonstrate that this is not always the case, especially

for a jet where there can be mixing across the zero shear in the centre of the jet. Indeed this

can also be seen in the DNS (Direct Numerical Simulations) studies of Tse et al (2003). Another

problem with local parameterisations is that a small change in Ri from above to below the critical

value can produce a large change in the magnitude of the mixing. For this parameterisation

in particular this also dramatically affects the magnitude of the mixing in nearby regions, since

κ ∼ SL2 where L is the width of the of the low Richardson number region. It seems desirable to

have a parameterisation which changes more smoothly from one regime to another and allows

a vertical transport of turbulence away from the mixing region.

3. New parameterisation

Having considered the implications of associating TP with a turbulent eddy diffusivity above, we

propose a new parameterisation for the eddy diffusivity in shear-driven stratified turbulence given

by
∂2κ

∂z2
− κ

L2
d

= −2S F (Ri). (10)

This is similar to the locally constant stratification limit of TP (8), but with the addition of a decay

length scale Ld = λLb. Here Lb = Q1/2/N is the buoyancy length scale where Q is the turbulent

kinetic energy (TKE) per unit mass, and λ is a non-dimensional constant which will be discussed

in section 4c. The function F (Ri) is a function of the Richardson number which remains to be

determined, and may be different in form to that in TP, although there must be a critical value of

Ri above which F (Ri) = 0. There are then two length scales: the width of the low Richardson

number region as before (from the first term in (10)), and the buoyancy length scale which is
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the length scale over which the TKE is effected by the stratification (see Appendix A for a more

detailed discussion of the length scales). In particular, the inclusion of a decay length scale

means that the diffusivity decays exponentially away from the mixing region with a length scale

of Ld. This is important since turbulent eddies generated in the low Ri layer can be vertically self-

advected and mix nearby regions. As well as being a process that we will show later is physically

important, this also gives a smoother diffusivity than the Hallberg (2000) scheme, especially in

areas where the Richardson number is noisy.

Our parameterisation predicts the turbulent eddy diffusivity in terms of the vertical profiles of

velocity and density, providing that the TKE is known. To complete our parameterisation we use

a TKE (Q) budget such as that used in second-order turbulence closure models (see Umlauf and

Burchard, 2005), however we make a few additional assumptions and use the simplified form

∂

∂z

(
(κ + νo)

∂Q

∂z

)
+ κ

(
S2 −N2

)−Q (cNN + cSS) = 0. (11)

The balance is therefore between a vertical diffusion of TKE due to both the eddy and molecular

viscosity (ν0), the production of TKE due to shear, a sink due to stratification and the dissipa-

tion. Note that we are assuming a Prandtl number of 1, although a parameterisation for the

Prandtl number could be added. We have assumed that the TKE reaches a quasi-steady state

faster than the flow is evolving and faster than it can be affected by mean-flow advection so that

DQ
Dt

= 0. Since this parameterisation is to be used in climate models with low horizontal resolution

and large time steps compared to the mixing timescales, this is a good assumption. Our most

tenuous assumption is in the form of the dissipation, ε = Q(cNN + cSS) (where cN and cS are

parameters to be determined), which is assumed to be dependent on the buoyancy frequency

(through loss of energy to internal waves) and the velocity shear (through the energy cascade

to smaller scales; see Shih et al, 2000). This can also be written as ε = Q3/2 (cN/Lb + cS/Ls) so

that the dominant length scale for the dissipation is the minimum of the buoyancy length scale

9



and the shear length scale, Ls = Q1/2/S. This budget is for kinetic energy due to 3D turbulence

only, rather than that due to internal waves, since the waves do not necessarily contribute to

mixing. Hence it is difficult to compare TKE balances with laboratory or oceanic data since these

generally include internal wave effects.

It is worth observing that our diffusivity equation (10) is equivalent to a steady ’transport’ equation

for the turbulent diffusivity (ie, with Dκ
Dt

= 0)

∂

∂z

(
κ
∂κ

∂z

)
+ 2κSF (Ri)−

(
κ

Ld

)2

−
(

∂κ

∂z

)2

= 0

as noted by Lars Umlauf (personal communication). The first term on the left can be regarded as

a vertical transport of diffusivity, the second term as a source and the final two as sinks. Using

this as a second equation (along with that for the TKE) has an advantage over standard two

equation turbulence models such as k − ε and Mellor-Yamada (see section 5d) in that the eddy

diffusivity being prescribed is calculated directly, and that these equations are simple enough to

solve quickly using an iterative technique.

We also need boundary conditions for (10) and (11). For the turbulent diffusivity we use κ = 0

since our diffusivity is numerically defined on layer interfaces. This ensures that there is no turbu-

lent flux across boundaries. If the diffusivity is instead defined within a layer then an alternative

based on the logarithmic layer of the wall should be used (see Burchard et al, 2005). For the

TKE we use boundary conditions of Q = Q0 where Q0 is a constant value of TKE used to prevent

a singularity in (10) that is chosen to be small enough to not influence results. Note that κ calcu-

lated here is that due to shear driven turbulent mixing only; the total diffusivity would be this plus

any diffusivities due to other turbulent processes (eg. internal wave driven mixing, convection,

mechanically forced boundary turbulence) or a background value.
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In the following sections we assess our parameterisation in various well-understood limits to

verify that it behaves well in these limits and is consistent with established research.

a. Homogeneous stratified turbulence

One limit which has been widely studied is the limit of homogeneous turbulence where vertically

uniform profiles of shear and stratification are maintained in an infinite domain (Baumert and

Peters, 2000). In this limit our system predicts that κ ∝ SL2
b and gives a relationship for Ri

2λ2F (Ri) =
Ri

(
cNRi1/2 + cS

)

1−Ri
. (12)

The function F (Ri) is as yet unknown, however it decreases from a positive value Fo at Ri = 0

to zero at a critical value of Ri, hence the left hand side decreases monotonically to zero at

Ri = Ric. The right hand side increases monotonically from zero and becomes singular at

Ri = 1 which is expected to be greater than the critical value. Hence there is a unique value

of Ri < Ric for which this equation holds and where homogeneous turbulence is possible. In

general Ri is not only different from this value, but varies with depth, in which case all other

steady state solutions must have a non-local balance.

In homogeneous turbulence studies, full equilibrium (where the turbulent properties do not vary

with time) is only achieved for a single flux Richardson number (Rif = Ri/σ where σ is the

turbulent Prandtl number) and gradient Richardson number (see Burchard and Baumert, 1995).

Various laboratory and DNS results suggest values for this steady state Richardson number of

0.2 − 0.25 at high Reynolds numbers (Rohr et al, 1988; Shih et al, 2000), with two equation

turbulence models using values of 0.2− 0.3 (Umlauf and Burchard, 2005).
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b. Unstratified limit

The second limit we consider is that of an unstratified shear flow. Since we are assuming a

turbulent Prandtl number of 1 we can calculate the viscosity from (10) giving

∂2ν

∂z2
= −2Fo

∣∣∣∣
∂u

∂z

∣∣∣∣ , (13)

where Fo = F (0) and we use ν = κ to represent the eddy viscosity (with boundary conditions of

ν = 0 at the boundaries).

One well verified characteristic of unstratified turbulent shear flow is the law of the wall (Lesieur,

1997; Moin and Kim, 1982). This predicts that near a solid boundary where the stress is con-

stant, the eddy viscosity linearly increases away from the boundary and the velocity increases

in a log-layer. With a large velocity shear near the boundary, however, our parameterisation is

inconsistent with a linearly varying viscosity. To reconcile our parameterisation with this well-

tested theory, we modify our parameterisation to set Ld = min (λLb, Lz) in (10), where Lz is the

distance to the nearest solid boundary. This can be understood by considering Ld to be the size

of the largest turbulent eddies, whether they are constrained by the stratification (through Lb) or

through the geometry (through Lz).

A channel flow with constant stress satisfies ν |uz| = u∗2 in equilibrium (see Lesieur, 1997)

where u∗ =
√

τo/ρo is the stress velocity with surface stress τo. This then gives our new param-

eterisation for the unstratified case to be

∂2ν

∂z2
− ν

L2
z

= −2Fou
∗2

ν
. (14)

The numerical solution to (14) between two solid boundaries with a constant stress (Couette flow)

is plotted in Fig. 2, where we have taken Lz to be half the harmonic mean of the distances to both

boundaries. This means that Lz = z(D−z)
D

asymptotes to the distance to a relatively close bound-
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ary. The predicted viscosity is then approximately parabolic with ν ≈ √
2Fou

∗Lz =
√

2Fou
∗ z(D−z)

D
,

giving ∂ν
∂z

∣∣
z=±1

≈ ±√2Fou
∗. This satisfies the law of the wall providing that Fo ≈ 0.084 which

gives a von Karman constant of 0.41.

In summary, our parameterisation is consistent with the Turner (1986) results for gravity currents

under appropriate assumptions, and with the homogeneous stratified turbulence literature. In

the unstratified limit we can slightly modify our parameterisation for use near boundaries where

we can recover the law of the wall.

4. Constraining parameters

We have shown that our new parameterisation gives reasonable results in the limits discussed,

however for our theory to be complete there are several parameters which must be given. These

are the critical Richardson number Ric; the magnitude and shape of the mixing function F (Ri);

and the length scale ratio λ = Ld/Lb from (10). Also the two dissipation parameters cN and cS

from (11) must be found. Although these will be determined in section 5. by comparisons with

model results, we can constrain most of these parameters by referring to previous studies of

turbulent mixing. Appropriate parameter ranges are shown in Table 1.

a. Form of F(Ri)

Following TP we use the monotonically decreasing function

F (Ri) = Fo

(
1−Ri/Ric
1 + αRi/Ric

)

where α is the curvature parameter. We require α > −1, however there is no other a priori

restriction on the shape. The two important properties of F (Ri) are the critical Richardson num-

ber at which F (Ri) = 0 for Ri ≥ Ric (which will be discussed in the following section), and the
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magnitude of mixing Fo = F (0).

Turner (1986) chose a value of F0 = 0.08 to fit his data and after studying previous experiments

of unstratified mixing in jets and plumes which found values ranging from Fo = 0.07− 0.22 based

on a layer growth defined by a velocity profile. For our modified parameterisation (as described

in section 3b) to be consistent with the law of the wall, we require a von Karman constant of

≈ 0.41 and hence a value of Fo ≈ 0.084. Hence we want a value of Fo close to 0.08.

b. Critical Richardson number

The existence of a critical Richardson number above which turbulent mixing does not occur was

first suggested by Miles (1961), who showed that Ri > 1/4 is a sufficient condition for the stability

of stratified shear flows to exponentially growing modes. Flows with smaller Richardson num-

bers are subject to the Kelvin-Helmholtz (KH) instability mechanism where instabilities can grow

and roll up into Kelvin-Helmholtz billows. Secondary instabilities then lead to a degeneration into

three dimensional turbulent mixing. Some mixing can also be generated by Hölmböe instabili-

ties at larger gradient Richardson numbers (Strang and Fernando, 2001), although this mixing is

substantially weaker than that generated by KH instabilities. There have also been suggestions

that the critical Richardson number could be as large as 1 based on nonlinear stability arguments

(Abarbanel et al, 1986).

Some numerical DNS results (Smyth and Moum, 2000) and laboratory results (Koop and Browand,

1979) have suggested a slightly higher value of ∼ 0.3, and others as high as ∼ 1 (Strang and

Fernando, 2001). The method of calculation can play a large role, for instance a global Ri based

on the minimum value in a column will generally be much lower than an average value, and

also more indicative of the turbulent state. In the same way, calculating Ri based on time and
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spatial averages of the stratification and velocity shear at fixed depths may indicate the presence

of mixing at values greater than the critical value. For oceanographic data there are additional

issues. Insufficient vertical resolution could lead to a spuriously large value of Ri (see Peters

et al, 1995b) when the vertical gradients are not resolved, though De Silva (1999) shows that

the sampled Ri does not change with resolution, provided that the vertical distance between

samples is less than the Ozmidov scale. Another important issue with oceanographic profiles

is that they are generally instantaneous, so the values of Ri measured may not be those which

generated the turbulence: in particular turbulence may be decaying in time or space.

Values of Ric used in parameterisations are also varied. TP and the interior part of KPP both

use high values of 0.8 and 0.7 respectively, though the former is based on a bulk, rather than

gradient, Richardson number. The more recent results of Xu et al (2005) show that a critical

value of 0.25 gives good agreement with LES results of gravity currents. Second-order turbu-

lence closure models use various values ranging from 0.2 − 1.0, however their definition of a

critical Richardson number is for the complete extinction of turbulence in models assuming full

equilibrium. A better comparison may be with the steady state Richardson number Ris, since

turbulence decays exponentially for Ri > Ris (Umlauf et al, 2003). We would expect our Ric to

be a bit larger than the steady state values of 0.2− 0.3 found in DNS and laboratory experiments

(see section 3a. for references), hence for our parameterisation we suggest a value in the range

of Ric ∼ 0.25− 0.35.

c. Length scales

The first parameter introduced is λ = Ld/Lb, the ratio between a turbulent decay scale over which

the diffusivity decays, divided by the buoyancy length scale Lb. There are many different, but re-

lated, length scales discussed in the literature, the most common being the Thorpe scale (LT ),
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the Ellison scale (LE), the Ozmidov scale (Loz) and the buoyancy scale (Lb). The Thorpe length

scale is calculated by reordering potential density profiles to produce equivalent stable profiles,

with LT then the displacement due to the reordering. This is unaffected by non-overturning inter-

nal waves and is a good measure when there is a single overturn, but can be more complicated

if there are interacting overturns. The Ellison scale is given by LE = ρ′/ρz (where ρ′ is the RMS

fluctuation of the density about its mean) and is generally well-correllated with LT (Moum, 1996;

Smyth and Moum, 2000). The influence of the stratification on the turbulent eddies is measured

by the Ozmidov scale (Loz =
√

ε/N3) which is the smallest length scale to be affected by the

stratification. The buoyancy length scale is also a measure of the influence of buoyancy on the

small scale motions, although Lb is also influenced by internal waves included in Q. Note that

much of the previous literature defines the buoyancy length scale as q/N where q =
√

(2Q) is a

typical turbulence velocity scale.

It is unclear what length scale controls the decay of diffusivity away from the low Ri region, how-

ever we parameterise this length scale as Ld = λLb. The buoyancy length scale diagnosed from

our model results is affected by internal waves which do not necessarily mix, however neither the

Ellison nor the Ozmidov scales are suitable for our parameterisation since they require details of

sub-gridscale density structure, and the Ozmidov length scale lacks a suitable parameterisation

for the dissipation. The buoyancy length scale is a more viable alternative since the TKE balance

is based on physical principles, although assumptions must be made in the closures.

Various studies of the relationships between these length scales have shown that they are all

related to some extent. Moum (1996) finds the relationships LE ≈ 0.6LT ≈ 0.7Loz ≈ 0.6Lb,

where the length scales are the RMS values taken from data studies in the ocean thermocline.

However these ratios vary from study to study. The DNS studies of Smyth and Moum (2000)
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indicate a smaller value of about Lb/LT ≈ 0.6 rather than 1, and the data study of Peters et al

(1995a) suggests a value of 1.6 from local length scales, although there is lot of scatter. The way

in which these length scales are calculated may play a large role: Peters et al (1995a) find no

correlation between instantaneous values of Loz and LT . However when the same data is time-

averaged at constant depths the relationship then matches well with Loz ≈ 0.8LT from Dillon

(1982) which is found by carefully averaging properties over turbulent events. It has also been

shown that these ratios can evolve in time from a mixing event (Loz/LT can indicate the age of

turbulent mixing, Smyth and Moum, 2000) and can depend on the Richardson number (Baumert

and Peters, 2000). The length scales can also vary significantly in depth when the turbulent

mixing is not homogeneous. Tse et al (2003) and Joseph et al (2004) calculate average length

scales as a function of depth from quasi-steady turbulent mixing in a stratified jet, and although

LE is relatively constant across the domain, the Ozmidov and buoyancy length scales vary by

two orders of magnitude. However, the ratio Loz/Lb remains approximately 1 over the centre of

the jet, and then decreases away from the jet where there is a greater influence of inertial waves.

This review indicates that, while these different length scales are not equivalent, they are cer-

tainly related and are of the same order of magnitude. Hence we take λ = 0(1).

d. Dissipation parameters

The ratio of Loz/Lb also gives an indication of the parameters cN and cS since

2

(
Loz

Lb

)2

=
ε

QN
= cN + cSRi−1/2 (15)

Moum (1996) finds the relationship ε ≈ 0.73w2N where w is the rms vertical velocity fluctuation.

Assuming isotropic turbulence this would give ε/QN = 0.49. Similarly Peters et al (1995a) and

Dillon(1982) find Loz/LT ≈ 0.8 which (assuming Lb ∼ 1.6LT as found in the former paper) gives a

similar value. Baumert and Peters (2000) and Joseph et al (2004), however, show a dependence
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of this ratio on the Richardson number. In the former they find Loz/Lb ≈ 0.38Ri−1/4 from the

results of Rohr et al (1988) giving ε/QN ≈ 0.29Ri−1/2, though in the latter the dependence on Ri

is less pronounced. These results imply that reasonable values for cN and cS are in the range

0.1− 1.

5. Numerical results

a. Experimental set-up

In order to compare with our parameterisation and to assess what values of the parameters are

appropriate, we conduct high resolution numerical simulations of shear-driven stratified turbu-

lence. The non-hydrostatic version of the MITgcm (MIT global circulation model, see Marshall

et al, 1997) is used to model idealised shear and jet flows in a stratified environment. A 2.5m x

2m x 2m box in x, y and z is used which is cyclic in the x and y directions. Free slip boundary

conditions are imposed on the top and bottom boundaries to inhibit the generation of turbulence

near the boundaries. The grid size is 2.083mm in the x and y directions and varies in the z direc-

tion from 8.3mm at the edges to 1.67mm in the centre of the domain. The constant background

viscosity and diffusivity applied are κo = 1.0 × 10−6 m2s−1 and νo = 2.5 × 10−6 m2s−1. Although

these experiments are not strictly DNS (because they do not completely resolve the Kolmogorov

scale) nor LES (because they do not use a sub-gridscale turbulence model), simulations were

also conducted at a higher resolution (dx = 1.5625 mm) to check the statistical convergence of

the solutions, both of which were found to have converged.

A linear equation of state is used with density solely dependent on temperature with an ex-

pansion coefficient of 2× 10−4 oC−1. The initial stratification is constant (N2 = 0.0098) and due to

a temperature difference across the channel of 10 oC. The initial velocity profile is set for either
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a shear (with a velocity difference across the channel) given by

U(z) = Uo tanh

(
z

hu

)

with Uo = 0.0119 ms−1 and hu = 0.05 m, or jet (with a maximum velocity in the centre of the

channel) given by

U(z) = Uo exp

(
−

(
z

hu

)2
)

where Uo = 0.0261 ms−1 and hu = 0.084 m. The model is forced by relaxation to the initial

states in order that a statistically steady state can be reached, rather than run as a simple spin-

down case. This is important for diagnosing fluxes in a statistically steady state; in a spin-down

case the turbulence quickly decays as the Richardson number increases due to the mixing. The

momentum forcing is constructed to force the horizontal-mean velocity profile in the x direction

to evolve towards its initial profile uo(z). This is done using

∂u

∂t
= ... + Fu + λu (uo − u)

∂Fu

∂t
= λ2

u (uo − u) (16)

where u(z, t) is the u velocity averaged over the horizontal plane, and λu = 0.01 s−1. Then in

a statistically steady state the average velocity is the initial profile, with the momentum forcing

Fu(z, t) having evolved from zero to match the momentum fluxes (see Hallberg and Gnanade-

sikan, 2006). This is done to ensure that our Richardson number stays low. Note that we are

only forcing the average velocity profile rather than individual eddies. We cannot force the aver-

age temperature profiles in the same way since this can create spurious regions of convectively

unstable stratification, so we relax to the initial temperature profile To(z) with a relaxation time of

1000s.

The jet and shear experiments spin up, developing KH billows which grow and eventually break
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into 3d turbulence. The turbulence and mean profiles gradually evolve until they reach a quasi-

steady state where the forcing maintains the mean velocity and density profiles against the tur-

bulent mixing. There is a slow drift due to the long term evolution of the forcing profiles to-

wards u = u0, however the turbulence adjusts to a statistically steady state over a much shorter

timescale. We define a quasi-steady state as that where the total TKE is in a stastically steady

state for time-scales greater than an overturning period (width of region/velocity scale ∼ 10 s)

and less than the forcing time scale (max(1/λU , 1/λT ) = 1000 s). Profiles of velocity, tempera-

ture, TKE and heat flux are calculated from these simulations by taking averages in x and y of

quasi-steady quantities and then averaging over a period of 80 s. These profiles are provided to

the parameterisation in order to further constrain our parameters.

b. Results

Typical instantaneous slices in x and z of temperature during quasi-steady turbulent mixing are

shown in Fig. 3 for the shear case and in Fig. 4 for the jet case. In the former the forced flow is

from left to right at the top (u > 0) and from right to left at the bottom (u < 0), and in the latter

there is a jet flowing from left to right in the centre of the domain. Turbulent billows form over the

regions of high shear, entraining fluid into the mixing region and reducing the stratification (see

Fig. 3b and 4b). Eddy fluxes of temperature are shown in Fig. 3c and 4c and show the transport

of temperature fluctuations due to eddies. Note that both positive and negative fluxes occur in

individual eddies, although the average is negative. Also shown is the spanwise vorticity which

has filaments of large magnitude along fronts caused by high velocity shear (Fig. 3d and 4d).

A bulk Reynolds number for the flow can be calculated using Reb = ∆Uh/ν where ν is the

model viscosity and ∆U is the velocity difference across the mixing layer of width h. A local

turbulent Reynolds number can also be defined using Re = Q1/2Lb/ν. These give bulk Reynolds
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numbers of 3200 and 2400 for the shear and jet case respectively, and maximum values of Re

of 300 and 200, though these drop rapidly outside the mixing region. These are low values com-

pared to estimated values in the oceans of Reb ∼ 107 and Re ∼ 104, however it is very difficult to

achieve high Reynolds number flows in either numerical or laboratory experiments on this scale.

The exact terms in the horizontally-averaged TKE budget can be calculated from

∂Q

∂t
+

∂F

∂z
= −u′w′uz + w′b′ − νo∇u′.∇u′, (17)

where a is the horizontally-averaged part of the variable a, and a′ = a− a is the remainder. Also,

Q = 1/2u′.u′ is the TKE, and b is the buoyancy. The different terms are (from left to right): the

tendency of horizontally-averaged TKE; the vertical redistribution of TKE (due to eddy mixing,

fluctuations of pressure φ, and viscous diffusion), where F = w′Q′+w′φ′+νoQz; shear production

of TKE; conversion of TKE into potential energy; and explicit gridscale dissipation. These terms,

as calculated from the simulations, are time-averaged over the same periods as the profiles and

plotted in Fig. 5 (except the tendency term which is small). The error term is much smaller than

the remaining terms, and is mainly due to numerical differences in staggering of the pressure

terms. These figures clearly show that TKE is being transferred away vertically from regions

where it is produced (for example into the centre of the jet in Fig. 5b). However, it is difficult to

compare these terms from the simulation to those in out parameterisation (11), since the TKE

calculated from the simulations includes waves which may not contribute to mixing.

c. Comparison to parameterisations

Spatially averaged snapshots of various turbulent quantities are shown in Fig. 6 for the shear

case and give an indication of the statistical steadyness of the solution. Profiles of background

quantities u and T vary little in time whereas the turbulent quantities show some fluctuations,

though no trend. In the centre of the domain the shear is strong (Fig 6c) and the Richardson
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number is low, reaching a minimum of 0.07 (Fig. 6e). The stratification has been weakened due

to mixing in the central region, though the stratification on either side of the mixing region has

increased due to conservation of mass. The turbulence generated by the shear-driven mixing

can be seen in the TKE (Fig 6f), and the temperature flux (Fig. 6g). The turbulent diffusivity,

calculated as κ = −w′T ′
Tz

, is shown in Fig. 6h and, as expected, is large over the region where Ri

is small.

Fig. 7 shows the time averaged profiles from the shear case with our parameterisations for

three sets of parameters. The functions F (Ri) are shown in Fig 7b with all parameters listed in

Table 2. These parameters have been chosen to minimise the difference of the predicted eddy

diffusivity (calculated using profiles of N and S from the model results) from that calculated in

the model for both the shear and jet cases, given a value of Ric of 0.25, 0.3 or 0.35. Each of

these sets produces essentially the same parameterisation (shown in a dashed line Fig. 7c and

d) which matches the diffusivity (solid line) very well, and the buoyancy flux reasonably well. The

discrepancies in the buoyancy flux are due to larger fluxes than predicted between z = 0.7−0.85

m and z = 1.15 − 1.3 m. The dotted line shows the predicted diffusivity and flux for the original

TP, in which the diffusivity is zero for Ri ≥ 0.8. This can predict the location of the enhanced

mixing, although it does not capture the magnitude or the width of the mixing.

The profiles for the jet case are shown in Fig. 8. The main difference with the previous case

is the presence of two regions of high shear (Fig. 8c) which create two regions of low Richard-

son number. However the Richardson number in the centre of the jet is large, since the large

scale shear is small. The turbulent eddy diffusivity has two peaks where the Richardson number

is small, but the diffusivity is non-zero in the centre of the jet, contrary to predictions based on

local values of the Richardson number. This is also seen in Joseph et al (2004) who also find
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very different local scaling laws of κ with Ri for the inner and outer regions of the diffusivity. Us-

ing the same parameterisations as for the shear case we can capture the shape and magnitude

of the diffusivity and buoyancy fluxes (Fig. 9c+d). The previous TP parameterisation gives zero

eddy diffusivity, and therefore zero buoyancy flux, in the centre of the jet where the Richardson

number is large. Any local parameterisation (such as the interior part of KPP or Pacanowski

and Philander, 1981) which assumes a small diffusivity where Ri is large would suffer from this

problem. Although it has been shown that the magnitude of the mixing is less important than the

critical Ri where mixing stops, a local parameterisation would imply no mixing across the centre

of the jet, creating an unphysical mixing barrier.

It is clear that these three parameter sets produce very similar results. Indeed it appears that the

important aspect of F (Ri) is in capturing the value for the minimum Richardson number of the

profile. The parameter sets differ mainly in the critical value of Ri: this seems to be less impor-

tant for these profiles (probably because Ri varies rapidly in z), however is extremely important

in governing how much mixing occurs in an evolving flow (Xu et al, 2006; Papadakis et al, 2002).

d. Comparison to two equation turbulence models

Although no local Richardson number parameterisation can reproduce the buoyancy flux across

the jet, there are more complex nonlocal parameterisations also in use. These are two equation

turbulence models such as the k − ε model (see Marchuk et al, 1977; Rodi, 1987; Burchard and

Baumert, 1995) which consists of equations for the TKE (Q) and dissipation (ε)

∂Q

∂t
=

∂

∂z

(
ν

σk

∂Q

∂z

)
+ νS2 − κN2 − ε

∂ε

∂t
=

∂

∂z

(
ν

σε

∂ε

∂z

)
+

ε

Q

(
c1νS2 − c3κN2 − c2ε

)
(18)

for given parameters σk, σε, c1, c2 and c3. Note that we have used the notation of Q for the TKE

to be consistent with the rest of this paper, rather than the more commonly used k. The turbulent
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eddy viscosity and diffusivity are calculated from

ν = cµ
Q2

ε

κ = c′µ
Q2

ε
. (19)

The stability functions cµ and c′µ are functions of NQ/ε and SQ/ε, and are generally nonlinear

relationships derived from balances between velocity and temperature correlations.

The Mellor-Yamada level 2.5 model (Mellor and Yamada, 1982; Galperin et al, 1988) has a

similar structure except that it uses an evolution equation for Ql (where l is the length scale

l = Q3/2/ε) instead of the turbulent dissipation in (18). An important difference is the inclusion of

a wall function in c2 which is dependent upon the distance from the wall and is used to capture

the length scale for boundary layer turbulence.

To compare these models to our results we use the turbulence module from GOTM (the General

Ocean Turbulence Model, see Umlauf et al, 2005). We use the GOTM implementations of the

k − ε model (Umlauf and Burchard, 2005, Rodi, 1987) and the Mellor-Yamada model (see also

Mellor and Yamada, 1982) with parameters taken from these papers. The steady state Richard-

son numbers of the k − ε model and the Mellor-Yamada model are 0.25 and 0.18 respectively,

and the Mellor-Yamada model uses the length scale clipping from Galperin et al. 1988. For the

Mellor-Yamada model we use the stability function of Kantha and Clayson (1994), and for the

k − ε model that of Canuto et al (2001). Using the velocity and density profiles from our MIT-

gcm results and keeping these fixed, we find the profiles of turbulent diffusivity predicted by both

models when having reached a steady state.

Results from these models are compared to diffusivities and buoyancy fluxes for the shear and

jet cases in Fig (10). Also plotted is the new parameterisation p1. The k − ε model does a good
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job of capturing the width and magnitude of the mixing, which is particularly impressive since it

has not been tuned for this data, however the MY model does less well, overestimating the mix-

ing in the shear layer and underestimating it in the jet. The difference between the two models

does not seem to be due to the different values of Ris or the length clipping.

The success of the k − ε model suggests that good results may be obtained using this param-

eterisation, however in order to be incorporated into a large-scale ocean and climate model it

must be able to deal with long time steps. Our new parameterisation is simple enough to be able

to treat mixing implicitly, including the effects of the mixing on the ambient velocity and density

profiles.

6. Discussion of implementation in ocean climate models

In order to apply this parameterisation to coarse resolution ocean climate models we need suffi-

cient resolution to resolve the mixing layers. Data from field experiments (see Peters and Johns,

2004, and Peters et al, 1995b) suggests Lb = O(1− 10)m and mixing layer widths of 50− 150m

(though regions where Ri is less than a critical value can be much narrower). The buoyancy

length scale may not be fully resolved in the EUC of ocean climate models, but it is resolvable

in overflows with isopycnal coordinates where the resolution is naturally concentrated at regions

of high stratification. For z-coordinate models of overflows the simulation of mixing is currently

limited by the horizontal resolution, which must be able to resolve the bottom boundary layer

thickness divided by the topographical slope to avoid excessive numerical mixing (Winton et al,

1998). If the buoyancy length scale is not resolved then our parameterisation approximates to

κ = 2SFL2
d. This is a local balance where κ = 0 when S = 0, however we would not expect the

mixing to significantly penetrate to neighbouring grid cells when then grid size is larger than Ld,
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so this numerical approximation is benign and is resolution independent.

One possible issue of applying this parameterisation to a coarse resolution model is the sen-

sitivity of the Richardson number, and hence the mixing, on the resolution. To investigate this

issue we sampled our averaged profiles of velocity, temperature and buoyancy flux from our

model data at different vertical resolutions and applied our parameterisations to these sampled

profiles. Fig. 11 shows the results for the shear and jet cases with vertical resolutions of 0.1m,

0.067m, 0.04m and 0.002m with approximately 2, 3-4, 4-6 and 100 points across the low Richard-

son number region respectively. For a shear or jet in the ocean with a total mixing width of 100m

these resolutions scale to approximately 50m, 33m, 20m and 1m respectively. Our parameterisa-

tion p3 produces diffusivities that vary little as the resolution becomes coarser (middle panels).

For the coarsest resolution (dashed line) the predicted turbulent diffusivity does about as well

as the diffusivity from the model (calculated from the sampled buoyancy flux and temperature).

Obviously these results depend on sampling at very low resolutions: staggering which ensures a

point at the center of the low Richardson number regions gives better results. These results sug-

gest that our parameterisation only needs a few points across the mixing region to give plausible

results.

In order to be incorporated into a large-scale ocean climate model, any parameterisation must

be able to deal with time steps which are long compared to both the time scale on which the

turbulence evolves, and the time scale on which it alters the large-scale flow. To do this it should

treat the mixing implicitly, including the negative feedback from the modification of the resolved

flow and density structure by the mixing within each time step. Our parameterisation is simple

enough to implemented implicitly, including this negative feedback, and, since we are solving

directly for κ, gives a robust numerical solution with just a few iterations.
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7. Conclusions

We have presented a theory for parameterising shear-driven turbulent mixing that is simple

enough to be used for climate modelling. This parameterisation does not rely on dimensional

constants, so should be relevant for shear-driven mixing in both overflows and the EUC. It also

combines two length scales: the width of the low Richardson number region and the buoyancy

length scale (the length scale over which turbulence decays due to stratification). This creates

a non-local parameterisation which allows a vertical transport of turbulence from regions with a

low Richardson number to the surrounding areas over the buoyancy length scale. Our numerical

results show that this is an important physical process in mixing across a jet which is missing

from parameterisations based on the local Richardson number. It also has the benefit of pro-

viding a spatially and temporally smooth eddy diffusivity, which is particularly a problem for local

parameterisations when the Richardson number profile is noisy.

The aim of our parameterisation is to model the shear-driven mixing in regions where it is impor-

tant for the climate (overflows and the EUC), while remaining simple enough to be implemented

implicitly. Implicit solutions of the turbulent mixing are critical for applying a scheme to climate re-

gions where time steps are large, or to isopycnal models where layer thicknesses can be small.

Existing parameterisations are specific to the Pacific EUC (the interior part of of KPP) or are

more sophisticated general turbulence models (k − ε) used in regional models. Our new param-

eterisation is simple enough to be able to treat mixing implicitly as in Hallberg (2000), however it

is better physically motivated.

We have examined various limits of our parameterisation and found good agreement with exist-

ing work. Our numerical results with shear and jet profiles support our theory and have provided

parameter values which are consistent with ranges from previous work.

27



Our parameterisation has been implemented in the Hallberg Isopycnal Model (HIM) for use in

coupled climate simulations. It has proved to be robust and efficient, and initial results from

climate simulations have been encouraging. A follow up paper describing the numerical imple-

mentation and results is planned.
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8. Appendix A

To illustrate our parameterisation we can find analytical solutions for the turbulent diffusivity given

simplified profiles. In particular we consider the situation where the source G = 2SF (Ri) and

the decay length scale Ld are constant over the mixing region |z| ≤ d. Outside this region we

assume that the turbulence decays away infinitely quickly so that κ = 0. Within the mixing region

our parameterisation is then
∂2κ

∂z2
− κ

L2
d

= −G (20)

which has the solution

κ = GL2
d

(
1− cosh γZ

cosh γ

)
(21)

where γ = d/Ld and Z = z/d (with |Z| ≤ 1). Then if the decay length scale (or buoyancy length

scale since λ ∼ O(1)) is much less then the width of the low Richardson number region (e.g. the

TKE is small) we have γ À 1 which gives

κ ∼ GL2
d

(
1− e−γ(1−|Z|)) . (22)

Then the maximum value of κ scales with GL2
d. Indeed this scaling holds throughout the layer,

except in a narrow boundary layer of width 1/γ near the edges, where the diffusivity decreases

to zero.

In the opposite limit (of large TKE) then γ ¿ 1 and the solution becomes

κ ∼ GL2
d

(
γ2

2

(
1− Z2

))

=
Gd2

2

(
1− Z2

)
. (23)

Then the turbulent diffusivity is parabolic with a maximum value of Gd2/2. Hence the maximum

diffusivity scales with the square of the minimum of the buoyancy length scale and the width of

the low Ri layer, though the width of the diffusivity always spans the mixing region.
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This analysis has assumed that outside the mixing region the decay length scale Ld = 0. With a

non-zero value due to the vertical transport of TKE outside the mixing region we have κ ∝ e−z/Ld

(for z > 0). Hence the turbulent mixing decays away exponentially from the mixing region.
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Figure Captions

Fig. 1. Schematic of an overflow plume: vertical profiles of a) speed (solid line) and density

(dashed line), b) Richardson number and c) vertical turbulent displacement. Note that where the

velocity shear is large, the Richardson number is less that its critical value and there is vigorous

mixing, whereas where the shear is small and the Richardson number large there is little mixing.

Source for schematic is data from the Red Sea outflow plume in Peters and Johns (2005); the

bottom part of panel c) is blank due to missing data in Peters and Johns (2005)

Fig. 2. a) Eddy viscosity and b) its gradient for Couette flow (unstratified flow in a channel with

a constant stress) as predicted by our parameterisation using Lz as half the harmonic mean of

the distances to each boundary.

Fig. 3. Instantaneous slices for the shear case showing a) velocity u (ms−1) in the x direction,

b) temperature (oC), c) eddy temperature flux W ′T ′ (oCms−1), where A′ = A − A and A is the

average of the profile A in x, y and t, d) spanwise vorticity (s−1).

Fig. 4. As Fig. 3 except for the jet case.

Fig. 5. Terms from the TKE balance (17) calculated explicitly from the simulations and averaged

horizontally and temporally for a) the shear case and b) the jet case. The shear production of

TKE (solid line) is redistributed by a diffusion term (dashed), and transferred to potential energy

through a buoyancy term (dotted) or dissipated (dash-dot).

Fig. 6. Horizontally averaged snapshots of MITgcm results during the quasi-steady state in the

shear case. Profiles shown are of a) horizontal velocity (ms−1), b) temperature (oC), c) velocity
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shear (s−1), d) buoyancy frequency (s−2), e) Richardson number, f) TKE (m2s−2), g) temperature

flux WT (oCms−1) and h) turbulent diffusivity κ (m2s−1).

Fig. 7. Comparison of eddy diffusivities and fluxes from MITgcm results and our parameterisa-

tion for the shear case. a) Vertical profile of Ri based on the time and horizontal averages of N

and S; b) Three functions F (Ri) used in parameterisations p1, p2 and p3; c) Vertical profile of

the turbulent diffusivity κ from the time and horizontal average of the MITgcm results (solid line),

predicted diffusivity from our parameterisations p1, p2 and p3 (dashed lines), and the predicted

diffusivity from TP (dotted line); d) As (c) except for the buoyancy fluxes.

Fig. 8. As Fig. 6 except for the jet case.

Fig. 9. As Fig. 7 except for the jet case.

Fig. 10. Comparisons of turbulent eddy diffusivity (left panels) and buoyancy flux (right panels)

from our new parameterisation p1 (dashed) with the Mellor-Yamada parameterisation (dotted),

the k − ε parameterisation (dash-dotted) and the MITgcm results (solid). The top panels show

results from the shear case and the bottom panels those from the jet case.

Fig. 11. The Richardson number (left panels), the diffusivity predicted by the parameterisation

(middle panels) and the diffusivity calculated from the model flux for different vertical resolutions.

The top panels are for the shear case and the bottom panels for the jet case. The vertical

resolutions are: 0.003 m (solid), 0.04 m (dashed) , 0.067 m (dash dot with square markers), 0.1

m (dotted with circular markers).
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